Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mucosal Immunol ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38159726

RESUMEN

Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.

2.
Front Mol Biosci ; 10: 1110445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36923642

RESUMEN

The genome is pervasively transcribed to produce a vast array of non-coding RNAs (ncRNAs). Long non-coding RNAs (lncRNAs) are transcripts of >200 nucleotides and are best known for their ability to regulate gene expression. Enhancer RNAs (eRNAs) are subclass of lncRNAs that are synthesized from enhancer regions and have also been shown to coordinate gene expression. The biological function and significance of most lncRNAs and eRNAs remain to be determined. Epithelial to mesenchymal transition (EMT) is a ubiquitous cellular process that occurs during cellular migration, homeostasis, fibrosis, and cancer-cell metastasis. EMT-transcription factors, such as SNAI1 induce a complex transcriptional program that coordinates the morphological and molecular changes associated with EMT. Such complex transcriptional programs are often subject to coordination by networks of ncRNAs and thus can be leveraged to identify novel functional ncRNA loci. Here, using a genome-wide CRISPR activation (CRISPRa) screen targeting ∼10,000 lncRNA loci we identified ncRNA loci that could either promote or attenuate EMT. We discovered a novel locus that we named SCREEM (SNAI1 cis-regulatory eRNAs expressed in monocytes). The SCREEM locus contained a cluster of eRNAs that when activated using CRISPRa induced expression of the neighboring gene SNAI1, driving concomitant EMT. However, the SCREEM eRNA transcripts themselves appeared dispensable for the induction of SNAI1 expression. Interestingly, the SCREEM eRNAs and SNAI1 were co-expressed in activated monocytes, where the SCREEM locus demarcated a monocyte-specific super-enhancer. These findings suggest a potential role for SNAI1 in monocytes. Exploration of the SCREEM-SNAI axis could reveal novel aspects of monocyte biology.

3.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L822-L841, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438006

RESUMEN

Although epithelial-mesenchymal transition (EMT) is a common feature of fibrotic lung disease, its role in fibrogenesis is controversial. Recently, aberrant basaloid cells were identified in fibrotic lung tissue as a novel epithelial cell type displaying a partial EMT phenotype. The developmental origin of these cells remains unknown. To elucidate the role of EMT in the development of aberrant basaloid cells from the bronchial epithelium, we mapped EMT-induced transcriptional changes at the population and single-cell levels. Human bronchial epithelial cells grown as submerged or air-liquid interface (ALI) cultures with or without EMT induction were analyzed by bulk and single-cell RNA-Sequencing. Comparison of submerged and ALI cultures revealed differential expression of 8,247 protein coding (PC) and 1,621 long noncoding RNA (lncRNA) genes and revealed epithelial cell-type-specific lncRNAs. Similarly, EMT induction in ALI cultures resulted in robust transcriptional reprogramming of 6,020 PC and 907 lncRNA genes. Although there was no evidence for fibroblast/myofibroblast conversion following EMT induction, cells displayed a partial EMT gene signature and an aberrant basaloid-like cell phenotype. The substantial transcriptional differences between submerged and ALI cultures highlight that care must be taken when interpreting data from submerged cultures. This work supports that lung epithelial EMT does not generate fibroblasts/myofibroblasts and confirms ALI cultures provide a physiologically relevant system to study aberrant basaloid-like cells and mechanisms of EMT. We provide a catalog of PC and lncRNA genes and an interactive browser (https://bronc-epi-in-vitro.cells.ucsc.edu/) of single-cell RNA-Seq data for further exploration of potential roles in the lung epithelium in health and lung disease.


Asunto(s)
Enfermedades Pulmonares , ARN Largo no Codificante , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Epitelio/metabolismo , Humanos , Enfermedades Pulmonares/metabolismo , ARN Largo no Codificante/genética , Mucosa Respiratoria/metabolismo
4.
Front Immunol ; 12: 636720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815388

RESUMEN

Immune cell activation assays have been widely used for immune monitoring and for understanding disease mechanisms. However, these assays are typically limited in scope. A holistic study of circulating immune cell responses to different activators is lacking. Here we developed a cost-effective high-throughput multiplexed single-cell RNA-seq combined with epitope tagging (CITE-seq) to determine how classic activators of T cells (anti-CD3 coupled with anti-CD28) or monocytes (LPS) alter the cell composition and transcriptional profiles of peripheral blood mononuclear cells (PBMCs) from healthy human donors. Anti-CD3/CD28 treatment activated all classes of lymphocytes either directly (T cells) or indirectly (B and NK cells) but reduced monocyte numbers. Activated T and NK cells expressed senescence and effector molecules, whereas activated B cells transcriptionally resembled autoimmune disease- or age-associated B cells (e.g., CD11c, T-bet). In contrast, LPS specifically targeted monocytes and induced two main states: early activation characterized by the expression of chemoattractants and a later pro-inflammatory state characterized by expression of effector molecules. These data provide a foundation for future immune activation studies with single cell technologies (https://czi-pbmc-cite-seq.jax.org/).


Asunto(s)
Leucocitos Mononucleares/inmunología , Activación de Linfocitos/genética , Adulto , Anticuerpos Monoclonales/inmunología , Antígenos CD28/inmunología , Complejo CD3/inmunología , Células Cultivadas , Senescencia Celular/genética , Quimiotaxis/genética , Femenino , Perfilación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Inmunización , Lipopolisacáridos/inmunología , Masculino , Análisis de la Célula Individual , Adulto Joven
5.
J Allergy Clin Immunol ; 147(2): 470-483, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32709424

RESUMEN

Anaphylaxis is a life-threatening allergic reaction caused by cross-linking of high-affinity IgE antibodies on the surface of mast cells and basophils. Understanding the cellular mechanisms that lead to high-affinity IgE production is required to develop better therapeutics for preventing this severe reaction. A recently discovered population of T follicular helper Tfh13 cells regulates the production of high-affinity IgE in mouse models of allergy and can also be found in patients with allergies with IgE antibodies against food or aeroallergens. Here we describe optimized protocols for identifying Tfh13 cells in both mice and humans.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Células T Auxiliares Foliculares , Subgrupos de Linfocitos T , Animales , Humanos , Ratones
6.
Science ; 365(6456)2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31371561

RESUMEN

Cross-linking of high-affinity immunoglobulin E (IgE) results in the life-threatening allergic reaction anaphylaxis. Yet the cellular mechanisms that induce B cells to produce IgE in response to allergens remain poorly understood. T follicular helper (TFH) cells direct the affinity and isotype of antibodies produced by B cells. Although TFH cell-derived interleukin-4 (IL-4) is necessary for IgE production, it is not sufficient. We report a rare population of IL-13-producing TFH cells present in mice and humans with IgE to allergens, but not when allergen-specific IgE was absent or only low-affinity. These "TFH13" cells have an unusual cytokine profile (IL-13hiIL-4hiIL-5hiIL-21lo) and coexpress the transcription factors BCL6 and GATA3. TFH13 cells are required for production of high- but not low-affinity IgE and subsequent allergen-induced anaphylaxis. Blocking TFH13 cells may represent an alternative therapeutic target to ameliorate anaphylaxis.


Asunto(s)
Anafilaxia/inmunología , Inmunoglobulina E/inmunología , Interleucina-13/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Adolescente , Animales , Niño , Factor de Transcripción GATA3/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Interleucina-13/genética , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...